
www.educationvision.co.uk “Learners we can all be proud of.”

Page 1

The little book of
computational

thinking
by Mark C Baker

www.educationvision.co.uk “Learners we can all be proud of.”

Page 2

The little book of computational
thinking

Why computational thinking is useful
Computational thinking is usually presented as being what underpins much of computer
science¹. The 2013 UK National Curriculum documents for computing open with the following
line.

“A high-quality computing education equips pupils to use computational thinking and
creativity to understand and change the world.”²

Seymour Papert is credited with originating the term in 1980³, but Jeanette Wing is often
cited as being the person who popularised it in her 2006 paper⁴. She felt that all learners
should be exposed to computational thinking, not just those specialising in computer science.
She concludes her paper with the following.

“We should look to inspire the public’s interest in the intellectual adventure of the field. We’ll
thus spread the joy, awe, and power of computer science, aiming to make computational
thinking commonplace.”

For anyone teaching computing, or a related subject, the concept of computational thinking is
especially useful for helping to understand some of the key ideas that underpin computer
science. For many, it is the key driver when undertaking curriculum design.

What is computational thinking?
In the early days of the 2013/14 UK computing curriculum, computational thinking seemed to
get used increasingly in order to explain and even to justify, this new subject. The term
ended up being banded about quite a lot, although I was not always convinced that those
who used it had a really clear idea of what it was. I certainly felt somewhat in the dark, until I
came across the Computational Thinker: Concepts and Approaches diagram published by
Barefoot Computing (see below).

This clearly identifies six fundamental concepts, such as abstraction and decomposition, as
well as some key underlying approaches. Very helpful though this diagram is, the pedantic
side of my nature kicked in and I felt uncomfortable about the approaches side of the
diagram. Persevering is a characteristic, rather than an approach and debugging is a skill.

This prompted me to investigate further, to see if I could come up with a diagram that I felt
better represented the fundamentals of computer science. A quick online search showed that
there is no single definition of computational thinking that is widely agreed upon, although
the concepts decomposition, pattern recognition, abstraction and algorithms are commonly
mentioned.

The Google for Education website⁵ has a longer list of concepts, specifically mentioning
abstraction, algorithm design, automation, data analysis, data collection, data representation,
decomposition, parallelization, pattern generalization, pattern recognition and simulation.

www.educationvision.co.uk “Learners we can all be proud of.”

Page 3

A more reduced characterisation is the three As, abstraction (problem formulation),
automation (solution expression) and analyses (solution execution and evaluation). The
website ComputationalThinking.org opts for Define, Translate, Compute, Interpret.

Why computational thinking is unhelpful
Steve Easterbrook wrote a paper in 2014⁶ that was somewhat damning of computational
thinking. He felt that it had been widely adopted in the US as a course marketing tool.

“Since the concept was introduced, there has been remarkably little critical thinking about
computational thinking. The few critiques that have been written tend to focus on either the
vagueness of the term, or on a concern that the field of computer science should not be
reduced to just one of its practical tools.”

He views computational thinking as inherently reductionist, leading to problems that do not
have a computational solution being ignored (e.g. those will an ethical dimension or requiring
value judgements to be made). His paper is particularly concerned with sustainability and one
of his conclusions is as follows.

“Over-reliance on computational thinking is likely to lead not just to computational solutions
that ignore social and environmental sustainability, but often to solutions that actively
undermine such sustainability.”

Diagram reproduced under the terms of the Open Government Licence V2.0
http://www.nationalarchives.gov.uk/doc/open-government-licence/version/2/

http://www.nationalarchives.gov.uk/doc/open-government-licence/version/2/

www.educationvision.co.uk “Learners we can all be proud of.”

Page 4

Easterbrook also considers the importance of communication in the formulation of solutions.

“Computational thinking thus ignores the fact that any particular expression of the “the
problem to be solved” is the result of an ongoing negotiation between the competing needs of
a variety of stakeholders.”

The idea of an ongoing evolution of computing solutions is certainly key within agile
programming approaches.

The reductionist nature of computational thinking is perhaps more of an issue within higher
education, where learning is much more specialised and focused. It is less of an issue within
schools, where any learner in receipt of a well-rounded education should be exposed to a
range of thinking styles and problem solving approaches. However, it is a timely reminder
that computational thinking as a concept should be challenged and explored periodically.
Computational thinking seems to have achieved the status of an education orthodoxy, whilst
being variously defined and understood. It behoves us as professionals to periodically
challenge the accepted orthodoxies, if we are to move the subject of computing forwards and
avoid the “shallow manipulations” referred to in Papert’s 1996 paper⁷.

Devising a new diagram
Computational thinking is still a useful idea for classroom practitioners, as it helps us to
understand and explore the subject of computing. Since there are many different definitions,

Logic and algorithms

predicting, analysing,
instructions, rules

Decomposition

breaking down
into parts

Abstraction

finding essential
components, ignoring

unnecessary detail

making
judgements

EvaluationPatterns

spotting and
using similarities,

generalisation

Calculation

fluency with
numbers

Creativeness Designing and makingCollaboratingTinkering

reflecting, planning&designing,
testing and refining, seeking feedback

playing,
experimentingThis diagram is licenced under a Creative Commons

Attribution-ShareAlike 4.0 International License.

www.educationvision.co.uk “Learners we can all be proud of.”

Page 5

none of which I am entirely happy with, I decided to produce my own diagram, to see if it
would help move the debate forward.

The resulting diagram (see above) should not be filled with so much as to obscure the key
areas, nor should it be so reduced as to be unhelpful. As a subject specialist, the temptation
was to include all positive thinking approaches and characteristics, to grab as much as
possible for “my subject.” I have tried to resist this! However, this diagram, developed from
those that came before it, is the work of just one person. If it has value, it is as stimulus
material, to encourage thought and debate about computing, especially in schools.

Concepts
Decomposition
One of the first steps to be taken when writing a complex program or creating a complex
system, is to break down what is required into smaller, more manageable chunks. If I wanted
to send people to the moon and return them safely to Earth afterwards, I might decompose
the problem into the following stages; LAUNCH FROM EARTH, TRAVEL TO MOON, LAND ON
MOON, EXPLORATION ON MOON, LAUNCH FROM MOON, TRAVEL TO EARTH, LAND ON
EARTH. I could then take any one of these and decompose it further, for example, TRAVEL TO
MOON might include propulsion, life support, navigation, and communication. Decomposition
continues until the chunks are small enough to be tackled and solutions formulated. The
individual solutions can then be integrated to form the solution to the entire problem of
getting people to the moon and back.

It should be noted that decomposition is a general problem-solving technique and not one
that is uniquely applied within computer science. The same could be said of the other key
concepts, it is more how they blend together and are applied, together with the importance of
digital technologies, that gives the subject its unique flavour and value.

Abstraction
Even relatively simple real-life situations involve a great many factors and variables and it is
usually impossible to take everything into account, e.g. when writing a program to assist in a
particular situation. It is usually necessary to create a simplified version of reality, identifying
and focusing on the essential items, whilst ignoring as much of the detail as possible. The
London Underground or Tube map is a good example of an abstraction. The detailed
geographical information is ignored, with just the order of stations and the places where
travellers can change lines being retained. Some accessibility information is also added, to
produce a simplification that is extremely useful to travellers.

Many factors may interact in very complex ways to produce the skill set of an individual
footballer. A programmer working on a computer game may decide to list some skill areas,
such as passing, dribbling and shooting and allocate a score out of ten for each skill area, to
each player. Each time a player passes, dribbles or shoots, the appropriate score is used to
help decide whether the skill is executed successfully - the higher the score, the greater the
chance of success. This is an example of a data abstraction, the way that numbers are to be
used to represent a simplified version of reality.

Patterns
Spotting repeating patterns is key to writing efficient algorithms/programs, which can exploit
patterns by using repeating loop structures or reusable modules, such as procedures and
subroutines.

www.educationvision.co.uk “Learners we can all be proud of.”

Page 6

Logic and algorithms
The ability to think logically is an essential part of understanding and writing algorithms, the
sets of instructions/rules that make up computer programs. I therefore chose to put these
two together, although some models of computational thinking separate them.

Learners should be able to read, understand and appreciate algorithms written by other
people, as well as being able to construct their own. Standard algorithms, such as those for
sorting or searching data, are worthy of study.

Evaluation
Algorithms should be evaluated to try and determine if improvements can be made that lead
to greater efficiency. It is very unlikely that the first attempt at writing an algorithm produces
the best possible solution. Small, iterative improvements can often be made, sometimes
wholesale rewriting will be necessary. Solutions that are to be used by other people should be
evaluated prior to and after full deployment, in order to improve them. This may involve
making changes to one or more underlying algorithms, it may simply be a case of improving
how people interact with a program or system, the so-called human-computer interface.

Skills
Communication
Communication skills are crucial, given the need to coordinate the work within teams and to
understand the needs and wants of end users.

Debugging
Debugging takes mental effort and children will often want their teachers to do the debugging
for them. They must therefore be encouraged to be more independent and helped to learn
what is a multi-stage skill. Errors in algorithms must first be recognised, then located and
finally fixed, before retesting to ensure that all is now well and that the ‘fix’ has not
introduced more errors.

It often helps if algorithms are developed incrementally, in small steps, so that they can be
checked and debugged in an on-going fashion. If a lot of code is written in one go, the
number of problems or bugs that are introduced can be overwhelming to a novice
programmer and stop them from experiencing success.

Calculation
Writing algorithms often means representing reality using numbers, therefore numerical
fluency is important.

Approaches
Designing and making
In common with other school subjects, the approaches of the design and make cycle, such as
planning and seeking feedback, are important when writing programs and designing systems.

Collaborating
Working together is often a key part of computational thinking and widely seen in
professional situations. Whilst it is often seen in the classroom too, the difficulty with
assessing it and the fact that it is not therefore part of the formal examination system, means

www.educationvision.co.uk “Learners we can all be proud of.”

Page 7

that it does not receive the attention it deserves, especially as children progress through their
education.

Tinkering
Playful experimentation is often apparent in those that are the more gifted computational
thinkers. The readiness to engage in tinkering has been suggested in the past as one reason
why boys have performed better than girls in computing related subjects. Certainly, the
amount that can be learned in computing by playing around and seeing what happens, should
not be underestimated.

Characteristics
There is room for much difference of opinion with a diagram such as the one above,
especially in the characteristics section. However, it is an interesting challenge to try and
identify a small number of key characteristics. Here is my choice.

Striving for quality
The best solutions tend to result from teams and individuals who are not prepared to accept
second best, but are keen to find the best answers, presented to potential users in the most
effective ways.

Creativeness
Following rules and conventions is often a key part of computing solutions. Whilst being
mindful of these, computational thinkers need to be prepared to “think the unthinkable” and
throw out the rule book if they are to discover new techniques and achieve big steps forward.
Ideally they will develop a good instinctive ‘feel’ for when it is appropriate to be creative and
when it is better to follow existing conventions.

Thoroughness
The pedantic nature of computer programming and the nature of the solutions it can produce
mean that being thorough and attending to detail is an essential component for a successful
computational thinker. Whilst there is some overlap with striving for quality, I felt this
deserved a separate mention.

Persevering
Successful computational thinking requires persistence; first attempts often fail and even
when they work, there may be better solutions waiting to be discovered. It can be mentally
taxing and a determination to find answers is often needed.

In conclusion
Reflecting on computational thinking has led me to the following conclusions.

Ø Computational thinking is not the be all and end all of computing or computer science

Ø Computational thinking is currently ill-defined

ØDespite the first two bullet points, computational thinking is a valuable tool for thinking
about computer science and what it should be about

ØGreater debate about the nature of computational thinking would be beneficial to those in
schools who work in this area

www.educationvision.co.uk “Learners we can all be proud of.”

Page 8

Postscript
Readers must decide for themselves whether the proposed new computational thinking
diagram is a significant improvement over the earlier Barefoot Computing diagram, or indeed,
if some other definition of computational thinking is even more useful.

However, examining computational thinking in this way does throw up the question of how
does computational thinking fit into the National Curriculum subject of Computing?

I believe that we need to develop a much more digitally confident and competent population
to meet the needs of the future, not just for use at work, in education and within our
everyday lives. We must also ensure the widest possible participation in national debates
around the uses of digital technologies, the way in which they impact on people’s lives and
the sorts of controls and regulations that need to be put in place. This will not happen if there
is a widespread feeling that digital technologies are complex and beyond the ability of many
people to understand. Therefore I would place demystifying technology at the heart of
Computing, as its primary aim.

Responsible citizens will need to have a solid grounding in computing in order to play their
role in national debates on digital issues. The ability to use and, where necessary, to
integrate, a wide range of digital tools, will make people more effective as learners and at
work. At the same time, the curriculum should inspire the minority (albeit, in all probability, a
growing minority) who will go on to become the digital experts of the future.

With demystifying technology as the central aim, I see this being made up of three key
components, computational thinking, being able to use a wide range of digital tools and
understanding the digital context (see over).

This diagram is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

www.educationvision.co.uk “Learners we can all be proud of.”

Page 9

Demystifying
technology

Computational
thinking

Ab
le

 to
 u

se
 a

 w
id

e

ra
ng

e
of

 d
ig

ita
l t

oo
ls

Understanding the

digital context

Computing
curriculum:

Able to build tools
through coding

Able to integrate multiple
digital tools to form
effective solutions

Understand the ethical,
societal, environmental and
legal implications of the use

of digital technologies

Understand how to build
systems that include

people and digital
technology components

Understand the history of the
development and exploitation

of digital technologies

Understand a range of
digital technologies and

some of their applications

Able to analyse problems
and formulate realistic
and effective solutions

This diagram is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

There is a danger that schools in England have become too focused on computer science,
driven by changes to the examination system and that the choices for KS4 students are now
too narrow. A curriculum that puts demystifying technology at its heart is not only more
inclusive and relevant, but also more ambitious. Some pupils will want to focus more on one
of the component areas than the others, this is not a problem provided they receive enough
of a balance to meet the central aim of demystifying technology.

Most importantly of all, examination courses should be of high quality, designed to provide an
exceptional educational experience, rather than being geared towards the maximum
accumulation of league table points. The focus should be clearly on the types of young people
that the system should be capable of producing. Education should not be solely about
examinations, but in reality, examination specifications drive much of what happens,
especially within the secondary phase.

www.educationvision.co.uk “Learners we can all be proud of.”

Page 10

Sources
¹ Computational thinking: A guide for teachers by Andrew Csizmadia et al, published by
Computing at School, November 2015.
https://community.computingatschool.org.uk/resources/2324/single
See also https://barefootcas.org.uk/barefoot-primary-computing-
resources/concepts/computational-thinking/

² UK National Curriculum computing programmes of study
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-
programmes-of-study/national-curriculum-in-england-computing-programmes-of-study

³ Wikipedia entry for Computational thinking
https://en.wikipedia.org/wiki/Computational_thinking

⁴ Computational Thinking, J. Wing, Communications of the ACM, vol. 49, no. 3, pp. 33–35,
2006. http://www.cs.cmu.edu/~./15110-s13/Wing06-ct.pdf

⁵ Exploring Computational Thinking, Google Education
https://edu.google.com/resources/programs/exploring-computational-
thinking/index.html#!ct-overview

⁶ Computational Thinking to Systems Thinking: A conceptual toolkit for sustainability
computing by Steve Easterbrook, Dept of Computer Science, University of Toronto. From the
proceedings of the 2nd International Conference on ICT for Sustainability (ICT4S 2014).
Published 22/08/2014, Atlantis Press. doi:10.2991/ict4s-14.2014.28 https://www.atlantis-
press.com/proceedings/ict4s-14/13446

⁷ An Exploration in the Space of Mathematics Educations, by Seymour Papert, International
Journal of Computers for Mathematical Learning, Vol. 1, No. 1, pp. 95-123, 1996.
http://www.papert.org/articles/AnExplorationintheSpaceofMathematicsEducations.html

© Copyright Mark C Baker 2019

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0
International License. https://creativecommons.org/licenses/by-nd/4.0/

For other papers by Mark C Baker go to the Resources section at www.educationvision.co.uk

Books by Mark C Baker, available worldwide from Amazon and other booksellers:

Living in a digital world: Demystifying technology

The Kennet and Avon Canal in pictures

https://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/computational-thinking/
https://community.computingatschool.org.uk/resources/2324/single
https://community.computingatschool.org.uk/resources/2324/single
https://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/computational-thinking/
https://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/computational-thinking/
https://community.computingatschool.org.uk/resources/2324/single
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
https://en.wikipedia.org/wiki/Computational_thinking
https://en.wikipedia.org/wiki/Computational_thinking
https://en.wikipedia.org/wiki/Computational_thinking
https://en.wikipedia.org/wiki/Computational_thinking
http://www.cs.cmu.edu/~./15110-s13/Wing06-ct.pdf
http://www.cs.cmu.edu/~./15110-s13/Wing06-ct.pdf
http://www.cs.cmu.edu/~./15110-s13/Wing06-ct.pdf
http://www.cs.cmu.edu/~./15110-s13/Wing06-ct.pdf
https://edu.google.com/resources/programs/exploring-computational-thinking/index.html#!ct-overview
https://edu.google.com/resources/programs/exploring-computational-thinking/index.html#!ct-overview
https://edu.google.com/resources/programs/exploring-computational-thinking/index.html#!ct-overview
https://edu.google.com/resources/programs/exploring-computational-thinking/index.html#!ct-overview
https://www.atlantis-press.com/proceedings/ict4s-14/13446
https://www.atlantis-press.com/proceedings/ict4s-14/13446
https://www.atlantis-press.com/proceedings/ict4s-14/13446
https://www.atlantis-press.com/proceedings/ict4s-14/13446
https://www.atlantis-press.com/proceedings/ict4s-14/13446
http://www.papert.org/articles/AnExplorationintheSpaceofMathematicsEducations.html
http://www.papert.org/articles/AnExplorationintheSpaceofMathematicsEducations.html
https://creativecommons.org/licenses/by-nd/4.0/
www.educationvision.co.uk
http://www.educationvision.co.uk/books.html
https://www.amazon.co.uk/dp/1540697517/ref=sr_1_1?ie=UTF8&qid=1517403673&sr=8-1&keywords=living+in+a+digital+world
https://www.amazon.co.uk/dp/1987515226/ref=sr_1_2?s=books&ie=UTF8&qid=1524075235&sr=1-2

